## КАМЧАТКА И КОМАНДОРСКИЕ ОСТРОВА

## В.И. Левина, Е.И. Иванова, Е.И. Гордеев, Е.И. Гусева

Сеть сейсмических станций Камчатки в 1999 г. несколько изменилась, по сравнению с таковой в 1998 г. [1]. В Ключевском кусте радиотелеметрических станций с 1 сентября начала работать сейсмическая станция «Логинов» (LGN). Информацию о параметрах этой и других сейсмических станций можно получить из [2]. Станция LGN играет существенную роль лишь в определении параметров землетрясений, гипоцентры которых находятся в Ключевской группе вулканов, поэтому ее появление практически не изменило контуры изолиний надежной регистрации землетрясений в регионе, которые были приведены в [3]. Методика определения параметров землетрясений не изменилась и изложена в [4–6].

Всего в 1999 г. определены эпицентры 3606 землетрясений с  $K_{\rm S}$ =5.8–14.3, включенных в каталог [7]. Из них 51 имеют  $K_{\rm S}$ ≥11.6, что несколько выше их среднегодового числа. На рис. 1 представлены графики распределения во времени ежесуточного числа землетрясений и накопленной величины высвобожденной сейсмической энергии. Суммарная сейсмическая энергия, выделившаяся в очагах всех землетрясений 1999 г., составляет  $\Sigma E$ =5.6·10<sup>14</sup> Дж, что ниже ее среднегодового значения ( $\Sigma E$ =12·10<sup>14</sup> Дж), рассчитанного по материалам наблюдений за 1962–1998 гг. Распределение землетрясений по энергетическим классам  $K_{\rm S}$  приведено в табл. 1, по глубинам – в табл. 2. Максимальная глубина гипоцентра составила 597 км для землетрясения с  $K_{\rm S}$ =10.2, произошедшего 1 марта в 10<sup>h</sup>49<sup>m</sup> [7]. Для 40 землетрясений определены механизмы очагов [8] по знакам первых вступлений *P*-волн на станциях Камчатской опытнометодической партии и мировой сети.



*Рис.* 1. Графики изменения суточных чисел N землетрясений с  $K_s \ge 8.6$  (а) и высвобожденной сейсмической энергии  $\Sigma E$  (б) за 1999 г.

Таблица 1. Распределение числа землетрясений N по энергетическим классам Ks

| Ks | ≤8.5 | 9   | 10  | 11  | 12 | 13 | 14 | Σ <i>E</i> ·10 <sup>14</sup> , Дж |
|----|------|-----|-----|-----|----|----|----|-----------------------------------|
| Ν  | 2489 | 668 | 294 | 104 | 34 | 14 | 3  | 5.6                               |

Примечание.  $K_{\rm S}$  здесь и далее соответствует  $K_{{\rm S1}2}^{~~\Phi 68}$  из [6].

| $h_1-h_2$ , км | N(h) | $h_1-h_2$ , км | N(h) | $h_1-h_2$ , км | N(h) |
|----------------|------|----------------|------|----------------|------|
| 0 - 10         | 550  | 81 - 90        | 80   | 251 - 300      | 5    |
| 11 - 20        | 642  | 91 - 100       | 86   | 301 - 350      | 6    |
| 21 - 30        | 569  | 101 - 12       | 125  | 351 - 400      | 0    |
| 31 - 40        | 798  | 121 - 140      | 71   | 401 - 450      | 1    |
| 41 - 50        | 243  | 141 - 160      | 50   | 451 - 500      | 0    |
| 51 - 60        | 142  | 161 - 180      | 33   | 501 - 550      | 2    |
| 61 - 70        | 98   | 181 - 200      | 16   | 551 - 600      | 6    |
| 71 - 80        | 72   | 201 - 250      | 11   |                |      |

Таблица 2. Распределение числа землетрясений по интервалам глубин очагов

Самое сильное ( $K_{\rm S}$ =14.3, Mw=6.9) землетрясение (13) реализовалось 8 марта в 12<sup>h</sup>25<sup>m</sup> [7] и ощущалось в Петропавловске-Камчатском с интенсивностью 5 баллов. Однако максимальная интенсивность сотрясений до 6 баллов наблюдалась при другом землетрясении 14-го класса ( $K_{\rm S}$ =13.8, Mw=6.0), зарегистрированном 18 сентября в 21<sup>h</sup>28<sup>m</sup>. Еще одно из трех землетрясений подобной энергии ( $K_{\rm S}$ =13.7, Mw=6.0) произошло 7 июля в 18<sup>h</sup>52<sup>m</sup> на крайнем юге исследуемой территории (21 на рис. 2). Оно ощущалось с интенсивностью 3–4 балла в Северо-Курильске (189 км) и 3 балла – в Паужетке (286 км). Общее же число ощутимых землетрясений с интенсивностью от 2 до 6 баллов составило 84 [7].



Рис. 2. Карта эпицентров землетрясений Камчатки за 1999 г.

1 – энергетический класс K<sub>S</sub>; 2 – глубина *h* гипоцентра, км; 3 – изобата, м; 4 – эпицентральные зоны №№ 1–4; 5 – граница региона; 6 – линии вертикальных разрезов фокальной зоны. Цифрами обозначены землетрясения с K<sub>S</sub>≥11.6, согласно [7].

На рис. 2, 3 представлены карта эпицентров землетрясений с  $K_S \ge 8.6$  и вертикальные разрезы фокальной зоны вдоль и вкрест нее (по линиям A–A' и B–B'). Из рисунков хорошо видны две известные крупные сейсмоактивные зоны – северо-восточного простирания вдоль побережья Камчатки (рис. 2) с крутым падением очаговой области под полуостров (рис. 3, б) и северозападного, вдоль Алеутского глубоководного желоба (рис. 2).



*Рис. 3.* Глубинные разрезы по вертикальным плоскостям по направлениям А–А' и В–В' для землетрясений, показанных на рис. 2

1 – энергетический класс *K*<sub>S</sub>.

В течение 1999 г. наблюдалось четыре вспышки сейсмической активности за периоды 8–23 марта (№ 1), 18–19 сентября (№ 2), 19 сентября–12 ноября (№ 3) и 26 ноября–22 декабря (№ 4). Контуры площадок, где они локализованы, показаны на рис. 2, а соответствующие карты эпицентров – на рис. 4. Рассмотрим их во временной последовательности.

№ 1. Самый мощный всплеск сейсмической активности (рис. 1) произошел с 8 по 23 марта в юго-восточной части Авачинского залива (рис. 2) с главным толчком с  $K_S$ =14.3, Mw=6.9, упо-мянутым выше.



*Рис.* 4. Карты эпицентров роев землетрясений № 1–4, выделенных на рис. 1, 2 1 – энергетический класс *K*<sub>S</sub>; 2 – глубина *h* гипоцентра, *км*; 4 – граница области роя; 5 – эпицентр, включенный в рой.

В этой части региона рои землетрясений отмечались и ранее: в 1966 г. [9], в 1970 г. [10], в 1998 г. [11]. Последний из них реализовался 22 мая–4 июня 1998 г., когда было зарегистрировано четыре события с  $K_s=11.6-13.3$  и величина высвобожденной сейсмической энергии составила  $\Sigma E=0.23 \cdot 10^{14} \ \ \ \ Delta$ ча. Очаговая зона всех толчков роя занимала объем примерно 50х60х40  $\kappa m^3$  и была вытянута в юго-западном направлении. В 1999 г. активизация сейсмичности была более сильной, чем в 1998 г. Она продолжалась 15 суток, причем в первые сутки (8 марта) зарегистрировано 70% от общего числа событий, в том числе все сильные ( $K_s \ge 11.6$ ) землетрясения (10–13) роя: в 05<sup>h</sup>39<sup>m</sup> с  $K_s=13.1$ , в 05<sup>h</sup>45<sup>m</sup> с  $K_s=11.8$ , в 05<sup>h</sup>57<sup>m</sup> с  $K_s=13.2$ , в 12<sup>h</sup>25<sup>m</sup> с  $K_{\rm S}$ =14.3 соответственно [7]. Всего в области роя произошло 76 землетрясений с  $K_{\rm S}$ ≥8.6. Суммарная сейсмическая энергия, выделившаяся в процессе роя, составила 2.3·10<sup>14</sup> Дж. Очаговая зона роя 1999 г. совпала пространственно с очаговой зоной роя 1998 г., имеет то же самое простирание и те же размеры. Для землетрясений (10, 12, 13) определен механизм очага [8]. В очагах землетрясений (10) и (13) отмечен взбросо-сдвиговый тип подвижки, в (12) – сдвиг с незначительной взбросовой компонентой (рис. 5). Оси напряжения сжатия близгоризонтальны. Одна из возможных плоскостей разрыва в каждом из этих очагов ориентирована в северо-восточном направлении, т.е. вдоль простирания геотектонических структур этого района. Собранные по максимальному толчку роя немногочисленные макросейсмические данные представлены в табл. 3.



*Рис.* 5. Карта эпицентров сильных (*K*<sub>S</sub>≥11.6) землетрясений Камчатки и Командорских островов за 1999 г.

1-5 - эпицентры землетрясений и тип подвижки (1 - сбросо-сдвиг; 2 - сдвиг; 3 - взброс; 4 - взбросо-сдвиг; 5 - механизм не определен); 6 - диаграмма механизма очага; 7 - изобата морских глубин, *м*. Числа возле эпицентров соответствуют номерам землетрясений первой графы каталога [7].

| Tuoning of maxpooners to the gamme of semiciprocentin of mapia b 12 25 of 15, 1115, 1117 of |                          |                                |   |                  |     |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------|--------------------------------|---|------------------|-----|--|--|--|--|--|--|
| №                                                                                           | Пункт                    | <u>Δ,</u> № Пункт<br><i>км</i> |   |                  |     |  |  |  |  |  |  |
|                                                                                             | <u>5 баллов</u>          |                                |   | <u>4 балла</u>   |     |  |  |  |  |  |  |
| 1                                                                                           | Маяк Круглый             | 99                             | 5 | Елизово          | 167 |  |  |  |  |  |  |
| 2                                                                                           | Петропавловск-Камчатский | 141                            | 6 | Озерновский      | 228 |  |  |  |  |  |  |
|                                                                                             | <u>4–5 баллов</u>        |                                |   | <u>2–3 балла</u> |     |  |  |  |  |  |  |
| 3                                                                                           | Институт                 | 148                            | 7 | Северо-Курильск  | 289 |  |  |  |  |  |  |
|                                                                                             | 4 балла                  |                                |   | Не ощущалось     |     |  |  |  |  |  |  |
| 4                                                                                           | ГМС Водопадная           | 114                            | 8 | Паужетка         | 207 |  |  |  |  |  |  |

*Таблица 3*. Макросейсмические данные о землетрясении 8 марта в  $12^{h}25^{m}$  с  $K_{s}=14.3$ , Mw=6.9

Все населенные пункты, указанные в табл. 3, расположены по побережью (рис. 6, а).



*Рис. 6.* Макросейсмические проявления землетрясений 8 марта в  $12^{h}25^{m}$  с  $K_{s}=14.3$  (a) и 18 сентября в  $21^{h}28^{m}$  с  $K_{s}=13.8$  (б)

1 – интенсивность сотрясений в баллах по шкале MSK-64 [11]; 2 – инструментальный эпицентр.

№ 2. Второй рой реализовался в южной части Камчатки за период с 18 сентября по 19 октября (рис. 1, 2, 4). Его эпицентральная зона располагалась в восточной–юго-восточной части очага сильнейшего землетрясения 08.06.1993 г. с  $K_S$ =14.9, MS=7.4 [12, 13]. Всего во время роя № 2 произошло 30 землетрясений с  $K_S \ge 8.6$ , из них два события (28, 32) имели  $K_S$ =13.8\* и 13.1\* соответственно [7]. Распределение эпицентров землетрясений в этом районе в течение 1999 г. показано на рис. 4. Суммарная сейсмическая энергия, выделившаяся в процессе роя, составила  $0.8 \cdot 10^{14} Дж$ . Серия началась 18 сентября в  $21^{h}28^{m}$  с максимального в 1999 г. землетрясения с  $K_S$ =13.8\*, Mw=6.0 [7], вызвавшего сотрясения на территории Камчатки до 6 баллов (табл. 4).

В связи с малым числом населенных пунктов (рис. 6, б) провести изосейсты не представляется возможным.

Для двух наиболее сильных землетрясений роя (28, 30) были определены механизмы очагов (рис. 5). В очаге землетрясения (28) произошла подвижка типа взбросо-сдвиг. Одна из возможных плоскостей разрыва почти вертикальна, другая – близгоризонтальна, с субмеридиональным простиранием. Тип подвижки в очаге землетрясения (32) – сбросо-сдвиг. Одна из возможных плоскостей разрыва в обоих очагах расположена вдоль, а другая – вкрест простирания геотектонических структур этого района.

№ 3. Данный рой, произошедший за период с 19 сентября по 12 ноября (рис. 1), представляет особый интерес по месту его возникновения в Алеутском глубоководном желобе у берегов о. Медный, т.к. за весь период детальных сейсмологических наблюдений на Камчатке, начиная с 1962 г., столь значительная активизация произошла здесь впервые. Число зарегистрированных в рое событий составило N=74 с  $K_{\rm S} \ge 8.6$  (рис. 4), суммарная энергия –  $\Sigma E=0.3 \cdot 10^{14} \ \text{Дж}$ . Сильные землетрясения (29, 30, 31) этого роя зарегистрированы 28 сентября в  $05^{\rm h}00^{\rm m}$  с  $K_{\rm S}=13.4$ , Mw=6.1 и в  $05^{\rm h}44^{\rm m}$  с  $K_{\rm S}=12.3$ , 30 сентября в  $03^{\rm h}18^{\rm m}$  с  $K_{\rm S}=12.5$ . Всю серию можно отнести к типу форшоки – главный толчок – афтершоки. С 19 сентября зафиксировано 16 форшоков с  $9.6 \le K_{\rm S} \le 11.4$ . Основное число афтершоков (N=33) зарегистрировано в первые сутки после главного события [7]. Очаговая область вытянута вдоль Алеутского желоба и занимает объем  $40x50x40 \ \kappa m^3$ . Подвижка в очаге главного события (29) – сбросо-сдвиг. Одна из возможных плоскостей разрыва близвертикальна и простирается в субширотном направлении, вторая полого падает на юг. Такую же подвижку в очаге имеет событие (30). В очаге землетрясения (31) реализовался взбросо-сдвиг.

*Таблица 4.* Макросейсмические данные о землетрясении 18 сентября в  $21^{h}28^{m}$  с  $K_{s}=13.8^{*}$ , Mw=6.0

| N⁰               | Пункт                                                                                                                 | Δ,<br><i>к</i> м        | N⁰                    | Пункт                                                                                                                  | Δ,<br><i>км</i>                 |
|------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1<br>2<br>3<br>4 | <u>6 баллов</u><br>Маяк Круглый<br><u>5–6 баллов</u><br>Озерновский<br>Северо-Курильск<br><u>5 баллов</u><br>Паужетка | 124<br>109<br>128<br>90 | 5<br>6<br>7<br>8<br>9 | <u>3–4 балла</u><br>Институт<br>Петропавловск-Камчатский<br><u>3 балла</u><br>База Родниковая<br>Приморский<br>Рыбачий | 237<br>228<br>187<br>219<br>221 |

№ 4. Не успела затихнуть очаговая зона № 3, как оживилась северо-западная часть Алеутского желоба. Здесь 26 ноября в  $00^{h}28^{m}$  землетрясением (38) с  $K_{s}=13.2$ , Mw=6.0 начался мощный рой (рис. 1, 2, 4), который продолжался до середины декабря. Но в этой части Алеутского желоба рои землетрясений не редкость: за время детальных сейсмологических наблюдений их было четыре: в 1965 г. [14], в 1981 г. [15], в 1982 г. [16] и в 1987 г. [17]. Последняя активизация была наиболее значительной. Тогда в очаговой зоне произошло около 55 землетрясений с  $K_{s}=8.6-14.0$  с суммарной сейсмической энергией  $\Sigma E=1.04 \cdot 10^{14} Дж$ .

Через 12 часов после начала роя, 26 ноября в  $12^{h}57^{m}$ , произошло максимальное  $(K_{\rm S}=13.4, MS=5.6)$  событие (43). Всего в рое было зарегистрировано 167 землетрясений с  $K_{\rm S}=8.6-13.4$ , из них 11 с  $K_{\rm S}\geq11.6$  (38–48 на рис. 4). Суммарная сейсмическая энергия, выделившаяся в очагах землетрясений роя, составила  $\Sigma E=0.66\cdot10^{14} \ Дж$ . Роевый процесс охватил область размером  $30x50 \ \kappa m^2$ , затронув глубины от 20 до 50  $\kappa m$ . Три землетрясения (38, 41, 43) ощущались на о. Беринг с интенсивностью от 3–4 до 5 баллов. Тип подвижки в очаге определен для восьми сильных землетрясений (38, 40, 41, 42, 43, 44, 47, 48 на рис. 5). Два самых сильных землетрясения (38, 43) имеют очень похожую дислокацию в очаге. Это сдвиги с крутопадающими нодальными плоскостями, одна из которых направлена вкрест простирания геотектонических структур Алеутского глубоководного желоба. В очагах остальных сильных землетрясений имеет место различный тип подвижки: взброс (41), взбросо-сдвиг (40, 42) и два сбросо-сдвига (44, 47).

В пределах Курило-Камчатского глубоководного желоба зарегистрировано лишь одно сильное ( $K_{\rm S}$ =12.3, MS=4.7) землетрясение (17 на рис. 2), произошедшее 9 июня в 07<sup>h</sup>07<sup>m</sup> на глубине h=24 км. В его очаге произошел сдвиг. Обе возможные плоскости разрыва почти вертикальны, оси напряжения сжатия и растяжения близгоризонтальны.

Сейсмически активным был район южной оконечности Камчатки и Северных Курил. Здесь произошло одиннадцать сильных одиночных землетрясений с  $K_{\rm S}$ =11.6–13.7 (1, 14–18, 21–24, 36, 49). Для десяти из них определены механизмы очагов. Тип подвижек неоднороден: это пять сбросо-сдвигов, три взбросо-сдвига и два сдвига.

Как всегда, достаточно активной была область выхода Курило-Камчатской фокальной зоны на дно океана. Здесь, кроме групп № 1, 2, зарегистрированы одиночные сильные землетрясения (2–9, 25–27, 34, 35, 37, 50, 51 на рис. 5). Для двенадцати из них определены механизмы очагов. В целом для очагов землетрясений этого района характерен взбросо-сдвиговый тип подвижки.

В Охотском море 14 октября в  $17^{h}35^{m}$  на глубине 504 км произошло одиночное землетрясение (33 на рис. 2) с  $K_{s}=12.7$ , *MPLP*=4.8 со взбросо-сдвиговым типом подвижки в очаге.

В Беринговом проливе 3 июля в  $05^{h}03^{m}$  было зарегистрировано одиночное землетрясение (20) с  $K_{s}=13.3$ ,  $h=43 \ \kappa m$ , в очаге которого произошла подвижка типа сдвиг.

*Сильные движения* записаны для трех землетрясений (табл. 5) акселерографическим каналом LG широкополосной цифровой сейсмической станции «Петропавловск». В табл. 5 даны значения зарегистрированных максимальных ускорений грунта, скорректированных за АЧХ прибора. На рис. 7 показана нескорректированная запись землетрясения (13), произошедшего 8 марта в 12<sup>h</sup>25<sup>m</sup>. Соответствующие спектры Фурье были скорректированы за прибор.

| Дата,<br>д м | t <sub>0</sub> ,<br>ч мин с | Mw  | Прибор  | Компонента | r,<br>КМ | $a_{\text{make}}, \\ c_{\mathcal{M}/c^2}$ |
|--------------|-----------------------------|-----|---------|------------|----------|-------------------------------------------|
| 08.03        | 12 25 43.8                  | 6.9 | IRIS-LG | EW         | 141.7    | 2.0                                       |
|              |                             |     |         | NS         |          | 3.6                                       |
|              |                             |     |         | Z          |          | 1.7                                       |
| 18.09        | 21 28 34.2                  | 5.6 | IRIS-LG | EW         | 236.3    | 2.3                                       |
|              |                             |     |         | NS         |          | 2.9                                       |
|              |                             |     |         | Z          |          | 1.1                                       |
| 05.10        | 05 01 36.1                  | 4.8 | IRIS-LG | EW         | 228      | 0.98                                      |
|              |                             |     |         | NS         |          | 1.3                                       |
|              |                             |     |         | Z          |          | 0.59                                      |

Таблица 5. Максимальные ускорения грунта по данным станции «Петропавловск»



*Рис.* 7. Записи (а) и спектры Фурье (б) землетрясения (13) 8 марта в 12<sup>h</sup>25<sup>m</sup> широкополосной сейсмической станцией «Петропавловск»

#### Литература

- 1. Левина В.И., Иванова Е.И., Гордеев Е.И. Камчатка и Командорские острова // Землетрясения Северной Евразии в 1998 году. Обнинск: ФОП, 2004. С. 162–168.
- 2. Старовойт О.Е., Мишаткин В.Н. Сейсмические станции Российской академии наук (состояние на 2001 г.). Москва Обнинск: ГС РАН, 2001. 86 с.
- 3. **Левина В.И., Иванова Е.И., Гордеев Е.И.** Камчатка и Командорские острова // Землетрясения Северной Евразии в 1997 году. Обнинск: ФОП, 2003. С. 140–144.
- 4. Федотов С.А., Зобин В.М., Гордеев Е.И., Иванова Е.И., Лепская Т.С., Митякин В.П., Синельникова Л.Г., Чиркова В.Н. Землетрясения Камчатки и Командорских островов // Землетрясения в СССР в 1985 году. – М: Наука, 1988. – С. 155–169.
- 5. Гусев А.А. Определение гипоцентров близких землетрясений Камчатки на ЭВМ // Вулканология и сейсмология. 1979. № 1. С. 74–81.
- 6. Федотов С.А. Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. – М.: Наука, 1972. – 117 с.
- 7. Левина В.И., Лепская Т.С. (отв. сост.), Антипова О.Г., Бахтиарова Г.М., Зенина С.А., Карпенко Е.А., Кобзева А.А., Кривогорницына Т.М., Митюшкина С.В., Пархоменко С.А., Пилипенко Л.В., Шевченко Н.А. Камчатка и Командорские острова. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).
- 8. Иванова Е.И. (отв. сост.). Камчатка и Командорские острова. (См. раздел VII (Каталоги механизмов очагов землетрясений) в наст. сб. на CD).
- 9. Федотов С.А., Токарев П.И., Кузин И.П. Землетрясения Камчатки и Командорских островов по данным детальных сейсмических наблюдений в 1966 г. // Землетрясения в СССР в 1966 году. М.: Наука, 1970. С. 229–257.
- 10. **Федотов С.А., Токарев П.И., Кондратенко А.М.** Землетрясения Камчатки и Командорских островов // Землетрясения в СССР в 1966 году. – М.: Наука, 1973. – С. 159–167.
- 11. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 12. Гордеев Е.И., Левина В.И., Чебров В.Н., Иванова Е.И., Шевченко Ю.В., Степанов В.В. Землетрясения Камчатки и Командорских островов // Землетрясения Северной Евразии в 1993 году. – М.: НИА-Природа. 1999. – С. 102–114.
- 13. Левина В.И., Лепская Т.С. (отв. сост.), Богатова Л.И., Зенина С.А., Кривогорницына Т.М., Митюшкина С.В., Митякина И.Н. Пасечко Н.П. Камчатка и Командорские острова // Землетрясения Северной Евразии в 1993 году. М.: НИА-Природа. 1999. С. 246.
- 14. Федотов С.А., Токарев П.И., Багдасарова А.М., Бобков М.Ф. Землетрясения Камчатки и Командорских островов по данным детальных сейсмологических наблюдений // Землетрясения в СССР в 1965 году. – М.: Наука, 1967. – С. 159–178.
- 15. Зобин В.М., Гордеев Е.И., Иванова Е.И., Синельникова Л.Г., Гаврилов В.А., Митякин В.П., Широков В.А. Землетрясения Камчатки и Командорских островов // Землетрясения в СССР в 1981 году. М.: Наука, 1984. С. 97–105.
- 16. Зобин В.М., Гордеев Е.И., Синельникова Л.Г., Митякин В.П. Землетрясения Камчатки и Командорских островов // Землетрясения в СССР в 1982 году. – М.: Наука, 1985. – С. 83–93.
- 17. Федотов С.А., Зобин В.М., Гордеев Е.И., Горельчик В.И., Иванова Е.И., Лепская Т.С., Митякин В.П., Ходенко В.Н. Землетрясения Камчатки и Командорских островов // Землетрясения в СССР в 1987 году. – М.: Наука, 1990. – С. 104–116.

# КАМЧАТКА И КОМАНДОРСКИЕ ОСТРОВА

| №  | Дата, | <i>t</i> <sub>0</sub> , | h,   | Ks   | Мс  | MS  | Mw  | Оси главных напряжений |     |    |     |    | Нодальные плоскости |     |    |      |     |     | Число |         |
|----|-------|-------------------------|------|------|-----|-----|-----|------------------------|-----|----|-----|----|---------------------|-----|----|------|-----|-----|-------|---------|
|    | д м   | ч мин с                 | КМ   |      |     |     |     |                        | Т   |    | Ν   |    | Р                   |     | NP | [    |     | NP2 |       | станций |
|    |       |                         |      |      |     |     |     | PL                     | AZM | PL | AZM | PL | AZM                 | STK | DP | SLIP | STK | DP  | SLIP  |         |
| 1  | 2     | 3                       | 4    | 5    | 6   | 7   | 8   | 9                      | 10  | 11 | 12  | 13 | 14                  | 15  | 16 | 17   | 18  | 19  | 20    | 21      |
| 1  | 06.01 | 13 09 10.7              | 52*  | 11.9 |     | 3.4 |     | 7                      | 52  | 78 | 180 | 9  | 321                 | 97  | 78 | -179 | 6   | 89  | -12   | 27      |
| 2  | 11.01 | 10 48 51.6              | 41*  |      | 5.5 | 5.3 | 5.6 | 58                     | 115 | 29 | 270 | 11 | 6                   | 128 | 42 | 137  | 253 | 62  | 56    | 101     |
| 3  | 24.01 | 13 15 53.7              | 40*  |      | 5.2 | 4.8 | 5.4 | 81                     | 39  | 9  | 219 | 0  | 129                 | 209 | 46 | 77   | 48  | 46  | 103   | 84      |
| 4  | 25.01 | 07 59 41.5              | 64*  | 11.9 | 4.1 |     |     | 66                     | 338 | 24 | 158 | 0  | 68                  | 136 | 50 | 58   | 0   | 50  | 122   | 61      |
| 5  | 28.01 | 20 38 42.7              | 18   | 12.2 | 4.8 |     |     | 36                     | 182 | 53 | 18  | 8  | 278                 | 327 | 59 | 22   | 225 | 71  | 147   | 24      |
| 6  | 06.02 | 13 36 14.9              | 61*  |      | 5.1 | 4.5 | 5.2 | 25                     | 313 | 9  | 219 | 63 | 110                 | 64  | 21 | -63  | 215 | 71  | -100  | 53      |
| 7  | 09.02 | 19 19 40.7              | 34*  | 12.3 | 4.4 | 4.0 |     | 42                     | 234 | 42 | 90  | 19 | 342                 | 27  | 46 | 20   | 283 | 76  | 134   | 27      |
| 9  | 07.03 | 10 55 19.4              | 54*  | 11.6 | 4.7 |     |     | 49                     | 297 | 14 | 189 | 37 | 88                  | 124 | 16 | 24   | 11  | 84  | 104   | 59      |
| 10 | 08.03 | 05 39 57.3              | 46*  |      | 5.7 | 5.7 | 5.8 | 33                     | 40  | 53 | 252 | 15 | 141                 | 185 | 55 | 14   | 87  | 78  | 144   | 108     |
| 12 | 08.03 | 05 57 46.2              | 50*  |      | 5.6 | 5.8 | 5.8 | 34                     | 196 | 55 | 0   | 7  | 101                 | 232 | 61 | 159  | 333 | 72  | 31    | 102     |
| 13 | 08.03 | 12 25 42.8              | 52*  |      | 6.9 | 7.1 | 6.9 | 54                     | 63  | 36 | 243 | 0  | 153                 | 213 | 55 | 44   | 94  | 55  | 136   | 125     |
| 14 | 19.04 | 09 12 49.0              | 118* | 12.2 | 4.7 |     | 5.2 | 68                     | 354 | 18 | 211 | 12 | 117                 | 185 | 36 | 59   | 42  | 60  | 111   | 190     |
| 15 | 25.05 | 14 19 06.2              | 156* | 11.6 | 4.1 |     |     | 13                     | 245 | 5  | 153 | 76 | 44                  | 341 | 32 | -81  | 150 | 58  | -96   | 30      |
| 16 | 29.05 | 12 54 37.5              | 78*  | 12.3 | 4.4 |     |     | 20                     | 132 | 36 | 27  | 47 | 246                 | 266 | 40 | -24  | 15  | 75  | -128  | 23      |
| 17 | 09.06 | 07 07 31.6              | 37*  | 12.3 | 4.7 | 4.7 | 5.2 | 12                     | 125 | 18 | 31  | 68 | 248                 | 237 | 36 | -59  | 20  | 60  | -111  | 89      |
| 20 | 03.07 | 05 03 43.4              | 32*  | 13.3 | 5.0 |     | 5.5 | 5                      | 245 | 78 | 0   | 10 | 154                 | 290 | 79 | -176 | 199 | 86  | -11   | 70      |
| 21 | 07.07 | 18 52 56.6              | 41*  |      | 5.8 |     | 6.1 | 68                     | 354 | 18 | 211 | 12 | 117                 | 185 | 36 | 59   | 42  | 60  | 111   | 223     |
| 23 | 06.08 | 00 32 41.5              | 57*  | 13.2 | 5.7 | 5.7 | 5.9 | 70                     | 225 | 20 | 45  | 0  | 315                 | 26  | 48 | 62   | 244 | 48  | 118   | 175     |
| 24 | 11.08 | 14 18 18.6              | 32*  | 11.7 |     |     |     | 24                     | 54  | 20 | 315 | 58 | 189                 | 180 | 28 | -42  | 308 | 72  | -111  | 39      |
| 26 | 02.09 | 01 22 50.4              | 51*  | 11.6 | 4.3 |     |     | 53                     | 146 | 28 | 11  | 23 | 269                 | 318 | 34 | 32   | 201 | 73  | 119   | 47      |
| 27 | 06.09 | 15 04 53.1              | 58*  | 11.6 | 4.9 | 4.1 |     | 64                     | 227 | 1  | 135 | 26 | 44                  | 132 | 19 | 86   | 315 | 71  | 91    | 79      |
| 28 | 18.09 | 21 28 34.2              | 60*  |      | 6.0 | 5.6 | 6.0 | 38                     | 27  | 11 | 288 | 50 | 185                 | 167 | 12 | -31  | 287 | 84  | -101  | 234     |
| 29 | 28.09 | 05 00 38.8              | 35*  | 13.4 | 6.1 | 6.0 | 6.1 | 36                     | 315 | 18 | 59  | 48 | 170                 | 349 | 19 | -161 | 241 | 84  | -72   | 102     |
| 30 | 28.09 | 05 44 04.4              | 39   | 12.3 |     | 5.2 | 5.3 | 23                     | 180 | 67 | 0   | 0  | 270                 | 317 | 74 | 17   | 223 | 74  | 163   | 26      |
| 31 | 30.09 | 03 18 25.2              | 16*  | 12.5 |     | 4.6 | 5.2 | 71                     | 38  | 14 | 261 | 12 | 167                 | 239 | 35 | 65   | 89  | 59  | 107   | 31      |
| 32 | 05.10 | 05 01 36.1              | 60*  |      | 5.4 |     | 5.5 | 63                     | 327 | 9  | 219 | 25 | 124                 | 194 | 21 | 63   | 42  | 71  | 100   | 174     |
| 33 | 14.10 | 17 35 06.4              | 483* | 12.7 |     |     |     | 36                     | 45  | 18 | 301 | 48 | 190                 | 191 | 19 | -19  | 299 | 84  | -108  | 91      |
| 34 | 24.10 | 12 24 49.7              | 50*  | 12.4 | 5.1 | 4.7 | 5.3 | 43                     | 68  | 41 | 284 | 19 | 177                 | 222 | 44 | 21   | 117 | 76  | 132   | 62      |
| 36 | 11.11 | 02 41 04.3              | 56*  |      | 5.7 | 5.8 | 6.1 | 49                     | 245 | 39 | 45  | 10 | 143                 | 270 | 49 | 147  | 23  | 66  | 46    | 102     |
| 37 | 13.11 | 21 24 45.3              | 42*  |      | 5.2 |     | 5.4 | 16                     | 45  | 74 | 225 | 0  | 135                 | 181 | 78 | 12   | 89  | 78  | 168   | 29      |
| 38 | 26.11 | 00 28 59.1              | 9*   |      | 6.1 | 6.0 | 6.0 | 0                      | 225 | 74 | 315 | 16 | 135                 | 271 | 78 | -168 | 179 | 78  | -12   | 57      |
| 40 | 26.11 | 00 54 16.1              | 31*  | 12.2 | 4.9 | 5.2 |     | 73                     | 123 | 11 | 252 | 13 | 344                 | 88  | 34 | 109  | 245 | 58  | 78    | 30      |
| 41 | 26.11 | 03 25 29.4              | 25*  | 12.6 | 5.1 | 4.9 |     | 81                     | 129 | 9  | 309 | 0  | 219                 | 299 | 46 | 77   | 138 | 46  | 103   | 27      |
| 42 | 26.11 | 05 30 19.4              | 30*  | 11.8 | 5.2 | 4.7 |     | 58                     | 348 | 29 | 143 | 11 | 240                 | 1   | 42 | 137  | 126 | 62  | 56    | 39      |
| 43 | 26.11 | 15 57 33.8              | 28*  |      | 6.0 | 5.6 |     | 48                     | 80  | 18 | 329 | 36 | 225                 | 259 | 19 | 19   | 151 | 84  | 108   | 76      |
| 44 | 27.11 | 23 12 26.9              | 26*  | 13.1 | 6.0 | 5.5 | 5.7 | 23                     | 14  | 67 | 180 | 5  | 282                 | 56  | 70 | 167  | 150 | 78  | 20    | 34      |
| 47 | 28.11 | 09 10 26.5              | 39   | 12.0 |     | 4.7 | 5.2 | 15                     | 108 | 74 | 315 | 7  | 200                 | 245 | 75 | 6    | 154 | 85  | 164   | 26      |
| 49 | 28.12 | 20 25 10.4              | 42*  | 12.0 |     | 4.1 | 5.1 | 26                     | 117 | 64 | 297 | 0  | 207                 | 255 | 72 | 19   | 158 | 72  | 161   | 41      |
| 50 | 30.12 | 00 11 49.1              | 59*  | 12.1 | 4.7 |     |     | 66                     | 192 | 20 | 45  | 12 | 310                 | 16  | 37 | 55   | 237 | 60  | 114   | 73      |
| 51 | 31.12 | 18 47 17.6              | 32   | 11.8 | 4.4 |     |     | 58                     | 192 | 29 | 37  | 11 | 300                 | 359 | 42 | 43   | 234 | 62  | 124   | 69      |

### Отв. сост. Е.И. Иванова

Примечание. Номера землетрясений в графе 1 и их параметры в графах 2–6 соответствуют таковым в [1], кроме глубины *h* гипоцентра, которая почти для всех землетрясений дана по фазе *pP* из [2]; магнитуды в графах 7, 8 взяты из [3, 2] соответственно.

### Литература

1. Левина В.И., Лепская Т.С. (отв. сост.), Антипова О.Г., Бахтиарова Г.М., Зенина С.А., Карпенко Е.А., Кобзева А.А., Кривогорницына Т.М., Митюшкина С.В., Пархоменко С.А., Пилипенко Л.В., Шевченко Н.А. Камчатка и Командорские острова. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).

2. Bulletin of the International Seismological Centre for 1999. - Berkshire: ISC, 2001.

3. Сейсмологический бюллетень (ежедекадный) за 1999 год / Отв. ред. О.Е. Старовойт. – Обнинск: ЦОМЭ ГС РАН, 1999–2000.